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Some books on General Relativity

> [ntroducing Einsteins Relativity, by R. D’Inverno, Clarendon Press, Oxford,
1992.

> Space-Time and Geometry, by S. Carroll, Addison Wesley, San Francisco, 2004.

> Gravitation and Cosmology. Principles and Applications of the General Theory of
Relativity, by Steven Weinberg, Wiley & Sons, NY, 1972.

> General Relativity, by M. P. Hobson, G. Efstathiou and A. N. Lasenby, Cambridge
University Press, Cambridge, 2006.

> General Relativity and the Einstein's Equations, by Y. Choquet-Bruhat, Oxford
University Press, Oxford, 2009.*

> General Relativity, by R. M. Wald, The University of Chicago Press, Chicago,
1984.*

> Relativity on Curved Manifolds, by F. de Felice & C.J.S. Clarke, Cambridge
University Press, Cambridge, 1990.*



Some books on General Relativity

> A First Course in General Relativity, by B. Schutz, Cambridge University Press,
Cambridge, 2009.

> Gravitation, by C. Misner, K. Thorne and J.A. Wheeler, Freeman, San Francisco,
1973.

> A Short Course in General Relativity, by J. Foster and J. D. Nightingale, Springer,
NY, 2006.

> Relativity, by W. Rindler, Oxford University Press, Oxford, 2006.

> The Large Scale Structure of Space Time, by S. Hawking and G.F.R. Ellis,
Cambridge University Press, Cambridge, 1973.*

> Global Aspects in Gravitation and Cosmology, by P.S. Joshi, Oxford University
Press, Oxford, 1993.*



Books on black holes

> Black Holes, by D. Raine, E. Thomas, Imperial College Press, London, 2005.

> [ntroduction to Black Hole Physics, by V.P. Frolov and A. Zelnikov, Oxford
University Press, Oxford, 2011.

> Black Holes, White Dwarfs and Neutron Stars, by S. L. Shapiro and S. A. Teukolsky,
John Wiley & Sons, New York, 1983.

> Black Hole Physics, by V. P. Frolov and 1. D. Novikov, Kluwer Academic Publishers,
Dordretch, 1998.*



Books on black hole astrophysics

® Beskin V. S., MHD Flows in Compact Astrophysical Objects 1st Edition, Springer
(2010).

® Camenzind M., Compact Objects in Astrophysics - White Dwartfs, Neutron Stars and
Black Holes, Springer (2007).

® Longair M., High-Energy Astrophysics, Cambridge University Press, Cambridge
(2004).

® Frank J., King A. & Raine D., Accretion Power in Astrophysics, Cambridge
University Press, Cambridge (2002)
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., What 1s a black hole?

The properties of a black hole then depend on what 1s gravity and how it
behaves.

Different theories of gravity will yield different black hole models

Newtonian gravity = Black stars
General relativity ~ === Black holes

Modified

relativistic gravity = Moditied
black holes



Newtonian gravity

V2<I>(F) — 471-(;"0(77), Poisson equation
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Force q

Integrating and applying Gauss theorem

On Earth surface: g =9.81 m/s2.



Newton’s law for two masses

The work needed to move the body over a small distance dr against this force is therefore given by

Mm
dW = Fdr =G dr.
r2
The total work needed to move the body from the surface ry of the gravitating body to infinity is then

~ M M
W:/ ¢ gr =G m:mgro.
To r2 TO

1 5 Mm

—mv? =G For Earth, the average escape velocity from sea level 1s
0 — 9

2 T0 11.19 km/s (kilometers per second), which 1s equivalent

which results in to 40,280 km/h (kilometers per hour).

2GM

Vo = . = \/2970- Escape velocity
0




Tabla de velocidades de escape

Objeto | Masa (kg) Radio (m) Velocidad de escape' (km/s) con respecto a la Tierra

Sol 2,0x1030 7,0x108 617,55 55,18

Mercurio ' 3,3x 102® 2,4x10° 4,3 0,38

Venus | 4,9x10°* 6,1x10° 104 0,92

Tierra | 6,0x 1024 | 6,4x10° 11,2 1

Luna 7,3x10%2 1, 7x10% | 2,38 0,21

Marte | 6,4x10%% 34x10° 5 0,45

Ceres | 9,4x10%0 49x10° 0,5 0,04

Jupiter | 1,9x10%7 | 7,1 x 107 5,32

M
— ! compactness
r




event
horizon

P.S. Laplace J. Michell

trapped
light rays

|

Black stars

Philosophical Transactions of the Royal
Society. 74: 35-57., 1784

of the Fixed Stars, in
Velscity of their Light, in ¢a
i any of them, and fuch other Data

procured frem Obfervations, as swould be fartber neceflary for

that Purpsfe. By the Rev. John Michell, B. D. F. R. §.
. . ~ - y A v

I & Letter to Henry Cavendith, Efg. F. R, S. and 4. S

"On the Means of Discovering the Distance, Magnitude, &c. of the Fixed Stars, in Consequence
of the Diminution of the Velocity of Their Light, in Case Such a Diminution Should be Found to
Take Place in any of Them, and Such Other Data Should be Procured from Observations, as
Would be Farther Necessary for That Purpose. By the Rev. John Michell, B. D. F. R. S. In a
Letter to Henry Cavendish, Esq. F. R. S. and A. S."



Treajectories of light cerpuscles
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Black stars are not black holes, because they have a solid surface.

The Poisson equation for the gravitational potential is not Lorentz
invariant, and hence incompatible with the current view of physics.



ames Clerk Maxwell (1831-1879): electromagnetism




Ondas electromagnéticas



Electric Field ——
Electric Field Maghetic Field —+—

MagneEIE Field
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Tension between classical mechanics and electrodynamics

The Lorentz Transformation
(for motion in the x-direction)

Figure 1. Two Inertial Frames in Standard Configuration

Hendrik Lorentz (1853-1928)



Ann.Physik 17 (1905), 891-921.

Special Relativity

3. Zur Elektrodynamilk bewegter Korper;
von A, Einstein.

Dab die Elektrodynamik Maxwells — wie dieselbe gegen-
wiirtig aufgefalit zu werden pflegt — in ihrer Anwendung auf
bewegte Korper zu Asymmetrien fithrt, welche den Phinomenen
nicht anzuhaften scheinen, ist bekannt. Man denke z, B. an
die elektrodynamische Wechselwirkung zwischen einem Mag-
neten und einem Leiter. Das beobachtbare Phiinomen hingt
hier nur ab von der Relativbewegung von Leiter und Maguet,
wihrend nach der iiblichen Auffassung die beiden Fille, daB
der eine oder der andere dieser Kirper der bewegte sei, streng
voneinander zu trennen sind. Bewegt sich n&mlich der Magnet
und ruht der Leiter, so entsteht in der Umgebung des Magneten
ein elektrisches Feld von gewissem KEnergiewerte, welches an
den Orten, wo sich Teile des Leiters befinden, einen Strom
erzeugt. Ruht aber der Magnet und bewegt sich der Leiter,
so entsteht in der Umgebung des Magneten kein elektrisches
Feld, dagegen im Leiter eine elektromotorische Kraft, welcher
an sich keine Energie entspricht, die aber — Gleichheit der
Relativhewegung bei den beiden ins Auge gefafiten Fillen
vorausgesetzt — zu elektrischen Strdmen von derselben GriBe
und demselben Verlanfe Veranlassung gibt, wie im ersten Falle
die elektrischen Kriifte.

i 3 ; total energy E rest energy + KE
Albert Einstein Electrodynamics of moving bodies

(me”) (v —1)me

I , 3myt 5 my° :
KE = > oY + 2 + T6 & +... energy | mass | speed of light

Kinetic Energy, KE (J)

I ” — 2
KE = Em(,v‘ for v<<c E mc

0 0.2c 0.4c 0.6c 0.8
S Sy (] J| kg | 299,792,458 m/s



The road to General Relativity

The problem: How to extend special
relativity so that 1t can be applied to
all reference systems and not only to
inertial ones?

What 1s 1t that makes a frame of reference non-inertial?

Einstein, A., 1908: “Relativitdtsprinzip und die aus demselben

gezogenen Folgerungen (On the Relativity Principle and the
Conclusions Drawn from It)", Jahrbuch der Radioaktivitat
(Yearbook of Radioactivity) 4: 411-462



Einstein’s reading of Mach made it
plausible for him to consider inertial
forces as being due to the action of
the masses of the distant stars.




A uniformly accelerated system is indistinguishable from
a system under a uniform gravitational field.

Equivalence Principle
B

~ accelerated upwards
- E

downwards

So, gravitation and inertia seem to be two aspects of the
same phenomenon: a gravito-inertial field.



Is it then possible to describe gravitation by means
of a field theory? How to represent that field?

Perim = ;@W( 1-v2/c2) Perimeter 2R T

Diameter Y2R B Y

In 1911 Einstein moved to Prague and there, at XV =R

the German University, he thought hard about 2
the problem. He discovers, using the [ '*.‘

Equivalence Principle, that the geometry of
space cannot be Euclidean in the presence of a
gravity.

v=wR —y =y(R)
dt = y(R)dr
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How could FEinstein transform his
physical 1deas and intuitions based on
the Equivalence Principle into a
gravitational field theory?

Georg Pick, 1n Praga, suggests
Einstein appealing to tensor analysis.

Georg Alexander Pick
(1859-1942)



“The views of space and time which I wish to lay before you have
sprung from the soil of experimental physics, and therein lies their

strength. They are radical. Henceforth space by itself, and time by
itself, are doomed to fade away into mere shadows, and only a kind of
union of the two will preserve an independent reality.”

H. Minkowski, Koln, September 21st, 1908




In 1912 Einstein returns to Ziirich as Ordinary Professor and with Marcel
Grossmann help studies the work of Riemann, Ricci, Levi-Civitta, en others.
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What 1s spacetime?

Spacetime is a physical system that “includes " both
space and time. It is the only system that interacts with
all other systems.

How can we represent spacetime?

Spacetime can be represented by a differentiable, 4-
dimensional, real manifold.



4-dimensional manifold e b
p<+— {2}

3 2% = 2 ({2})




Manifold

A set M 1s a differentiable manifold if:

. M 1s a topological space.
2. M 1s equipped with a family of pairs {(My, @a)}.
. The My's are a family of open sets that cover M: M = | J,My. The @, s are
homeomorphisms from M, to open subsets Oy of R": @y - My — Oy .

4. Given My and Mg such that My N Mg # 0, the map @g o @y I from the subset
Pa(Mg NMp) of R" to the subset Qg (Mg NMp) of R" 1s nfinitely differentiable
(C™).

A manifold M 1s said to be Hausdorff if for any two distinct elements x € M and
y € M. there exist Oy C M and Oy C M such that Ox N Oy =0.




Topological space

Let X be any set and T = {X } a collection, finite or infinite, of subsets of X . Then
(X, T) for a topological space 1ff:

XeT.
. 0eT.

. Any finite or infinite sub-collection {X;,X5,.... X, } of the X, 1s such that | JTX; €
T

. Any finite sub-collection {X;,X>,....X,} of the Xy 1ssuch that [ X; € T .

The set X 1s called a topological space and the X, are called open sets. The
assignation of T to X 1s said to “give " a topology to X




A differentiable manifold is a type of manifold that 1s locally similar
enough to a linear space as to allow to do calculus.

A homeomorphism or topological 1somorphism or b1 continuous
function 1S a continuous function between topological spaces that
has a continuous inverse function.



Objects on the manifold

contravariant

6 Ozt o

Ox'v Ox'v Oxt




Objects on the manifold

Tensor field




Spacetime: metric

We need to know how to measure distances over a manifold. These distances are the
Intrinsic separation between events of spacetime. We do this introducing a metric tensor.
Spacetime, then, 1s represented by an order pair (M, g), where g 1s the metric tensor.

Euclidean metric

Interval R O pdatde” = (dz®)? + (dz')? + (dz*)* + (dx?)?.

Minkowski metric

ds® = n,, dr*de” = (dz®)? — (dzt)? — (dx?)? — (dz°)?

The Minkowski metric tensor 7,, has rank 2 and trace —2. We call the coor-

dinates with the same sign spatial coordinates (adopting the convention x! = x,

x> =y, and x° = z) and the coordinate x* = ct is called temporal coordinate. The

constant ¢ 18 introduced to make the units uniform.




Minkowski Spacetime

Interval

Minkowski metric
tensor

Proper time

1
dr* = = (c’dt* — dz’ — dy* — d2?)

02
dr\? | ()P (de
dt dt dt




Minkowski Spacetime

There 1s a partial ordering of events. Simultaneity 1S not absolute
1In spacetime

for ds* > 0. the interval is timelike:

for ds* = 0, the interval i1s null or lightlike;

for ds* < 0, the interval 1s spacelike.




Light cones
















Particle horizon

B never sees A

after this event ~__.4 4

&
&

The worldline of a uniformly accelerated particle B starting from
rest from the origin of S. If an observer A remains at x = 0, then the worldline

of A is simply the r-axis. No message sent by A after r = ¢/ f will ever reach B.
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More general space-times 8w = 8,(X)




Tetrads

The coordinate basis vectors e, at a point P in a manifold are the
tangent vectors to the coordinate curves in the manifold and form a basis for the
tangent space at P.




i) — U (e (1)

For any set of basis vectors ¢,(x), we can define a second set of vectors called the dual

basis vectors:
ds =e_ (x)dx"“.

ds* = ds-ds = (dx“,) - (dx"e,) = (e, -e,) dx* dx”.

e, (x) - e,(x) = g4p(x).



At any given point P the manifold is flat, so

guv(P) =npv.

A manifold with such a property is called pseudo-Riemannian. It g,,,(P) = d,, the
manifold 1s called strictly Riemannian.

The basis is called orthonormal when é* e é, = n!; at any given point P. Notice
that since the tetrads are 4-dimensional we can write

€La (X)eff (X) = guv(x),

e,ua(P)eg(P) = Npv-




| Equivalence principle |

In an arbitrary spacetime it 1s always possible to find a reference system such
that, locally, all laws of physics can be expressed in it as those valid for
Minkowskian spacetime.

in space far

from any stars . .y falllno

towards the Earth



Pseudo-Riemannian spaces

In order to introduce gravitation in a general space-time we define a metric tensor

guv. such that its components can be related to those of a locally Minkowski space-
time defined by ds? = naﬁdéo’d&ﬁ through a general transformation:

tangent flat
space at P

manifold




Pseudo-Riemannian spaces

d (O dat

ds (0,1'# s )
¢ d2at %6 dat dav
Dk ds? i drlrdxvY ds ds

Now. multiplvine at both sides by 9z /0Y and usine:
. S . S ¢

JE™ Oa _

Ork Of~ 1

we get

d? 2 n - daxt dx¥ _ 0
ds2 MY ds ds

where l"'f‘“, 1s the affine connection of the manifold:

. . ‘) . y
o ().'I.'/\ ()"’{a
—OEX Dt DY




Geodesic equation

Cdr dr my



Cooxaxt axt_,  ax? ax) x”

axd ox't gx'c T8 Qxb dx'c xddxS

It 1s not a tensor!



The geodetic equation can be obtained independently of the Equivalence
Principle. We can assume a more general principle: any spacetime trajectory of
a free system 1s minimal.

where 7 1s the proper time and a 1s a constant with the dimensions of energy.

Writing this 1in general coordinates, we have:




dx” dxV dox* dxV
dA

. dxAdx” dx?
_rr» =/ = _
Y dr dr dr?




Derivatives

The usual derivative is not tensor

2/
acx'* axV s

dxHadx? dx’V




A covariant derivative of a vector field is a rank 2 tensor of type (1, 1). The
covariant divergence of a vector field yields a scalar field:

V#A#’ — GMA“(x) — Fa“#.A“(x) zd)(x)

A tangent vector satisfies VVV,., =0.



Covariant derivative |

The covariant derivative possesses the following properties:

l. Linearity: For constants a and b one has V,,(aA + bB") = aV,A~ + bV, B .

4. For a scalar field: V, 9 = ¢ .

5. Torsion free: V, V,0 = V,V, 0.
6. V,8ap =0.




. = %gad(abgdc + 0,84 — 948pc)-




Lie derivatives

[f there is a curve y on the manifold, such that its tangent vector is u* = dx”* /dA
and a vector field A is defined in a neighborhood of y, we can introduce a derivative
of A* along y as

/.'UAG:A?;}LP—U?;}AI’:A%J’—U%A@

This derivative is a tensor, and it is usually called Lie derivative. It can be defined
for tensors of any type. A Killing vector field is such that

0 TG (PN

-

éa




The Lie derivative w.r.t. a Killing field annihilates the metric.

[Cu is a Killing ficld: ]
irepresents  a globalj




From the equation of motion

The metric represents the potential of the gravitational field
The connection the strength of of the field.



|
F/i\v — _gka(augvot + 0y €ua —




Pseudo-Riemannian spaces

The presence of gravity is indicated by the curvature of space-time. The Riemann
tensor, or curvature tensor, provides a measure of this curvature:

o _ o o o e o pa
VA — © ALV ;w,k_*_ av’® uA alrp,v'

The form of the Riemann tensor for an affine-connected manifold can be
obtained through a coordinate transformation that makes the affine connection
vanish everywhere, 1.¢.

The coordinate system x* exists if

o o o o o pa
ul.v_ruv,k+rav HUA akru.v_o




The Ricci tensor 1s defined as

Ruv — gka Rkuav =R,

LoV "
Finally, the Ricci scalar is

R=gl'"Ry,.

The problem 1s how curvature relates to the physical properties of
material things. The most general aspect of things is their energy-
momentum representar by rank 2 tensor. For a perfect fluid:

Iy =(p+ Puyu, — Pgyy,




Towards General Relativity

Light is deflected of
its ariginal path




’ Einstein field equations

The field equations of General Relativity specity how the energy-momentum
tensor 1s related to the curvature.

(i) the Newtonian limit V2® = 47 Gp suggests that it should contain terms no
higher than linear in the second order derivatives of the metric tensor;
(i1) since T}, 1s symmetric then K, must be symmetric as well.




Einstein field equations

The field equations of General Relativity specity how the
energy-momentum tensor 1s related to the curvature.

Kuv p— aR#v +bRg#v +A.g#,v,




Bianchi’s identities

E—




Einstein field equations

Comparing with the weak field limit:

This 1s a set of ten non-linear partial differential equations for
the metric coetficients. In Newtonian gravity, otherwise, there 1s
only one gravitational field equation. General Relativity
involves numerous non-linear differential equations.



Einstein field equations

Einstein equations:

G =38nG1Ty,
] N

energy-momentum tensor
Einstein tensor (describes distribution of

(describes curvature matter in the spacetime)
of spacetime)




Einstein field equations

The conservation of mass-energy and momentum
can be derived from the field equations:

Contrary to classical electrodynamics, here the field equations
entail the energy-momentum conservation and the equations of
motion for free particles (i.e. for particles moving 1n the
gravitational field, treated here as a background pseudo-
Riemannian space-time).



Einstein field equations




Einstein field equations

[n vacuum I,,=0

The Ricci tensor vanishes. The curvature tensor, which has 20
independent components, does not necessarily vanish. This means that
a gravitational field can exist i empty space only 1f the
dimensionality of space-time 1s 4 or higher. For spacetimes with lower
dimensionality, the curvature tensor vanishes it 7, = 0



Why spacetime is 4D?

No. of spacetime dimensions
No. of field equations

No. of independent components of R,

Gravitation 1n empty space can only exists 1f n>3



Einstein field equations with A

The field equations of General Relativity specity how the energy-
momentum tensor 1S related to the curvature. They are ten non-
linear differential equations for the metric coefficients.

The set of equations 1s not unique: we can add any constant multiple of the
metric tensor to the left member and still obtain a consistent set of
equations:




Albert Emstem & Willem de Sitter




Einstein field equations with A




1

L=T—U=5mgabq“c;b— ,




Hilbert’'s way




Hilbert's way




5L ; 0
sda  ada M| 9(3,d9) |




If there are non-gravitational fields present the action will have and additional
omponent:

| |
S=—8eH+ Sm = A(_ﬁEH + EM) d*x,

- 2k 2K




Since 6 Sgy =0,




The Cauchy problem in GR

The Cauchy problem 1s the
problem of given the metric
tensor and 1ts derivatives at one
time x,, then construct the metric
which corresponds to a vacuum
spacetime for all future time.




The Cauchy problem in GR

Let us prescribe initial data g,
and g, , on S detined by xy/c=t.
The dynamical equations are the
SiX equations defined by




The Cauchy problem in GR

When these equations are solved for the 10 second derivatives
0%g,/0(x%)2, there appears a fourfold ambiguity, 1.e. four

derivatives are left indeterminate. In order to completely fix
the metric it 1s necessary to 1impose four additional conditions.
These conditions are usually 1mposed upon the affine
connection:




The Cauchy problem in GR

The condition /% = 0 1mplies 2y = 0, so the
coordinates are known as harmonic. With such
conditions 1t can be shown the existence, uniqueness
and stability of the solutions.




Conservation laws

Taking the covariant derivative to both sides of Einstein’s equations and
using Bianchi identities we get

Continuity



Energy-momentum of gravitation

Because of the Equivalence Principle, it 1s always possible to choose a coordinate
system where the gravitational field locally vanishes. Hence, its local energy is
ZErO0.

We can then define a quasi-tensor for the energy-momentum of gravity. Quasi-
tensors are objects that under global linear transformations behave like tensors.




Since 7, can be mterpreted as the contribution of gravitation to the

quasi-tensor ©,,, we can expect that it should be expressed in

geometric terms only, 1.€. as a function of the affine connection and
the metric. Landau and Litshitz (1962) found an expression for 7,

that contains only first derivatives and 1s symmetric:

4

C
Y e [(ngn payy _ ng rn); _ F,ﬁ’a F,,yy)(g“pg"” _ guivgpn)

+ 8¢ (I, Do + Ty 1), + 15, T+ T, 1)

+ggn(ry ry +rk ry +rk ry+rhkiry)

pYy  No no - py oy pn

+87g7 (I'je Iy — I}, Fol')y) |-

n- oy




[t 1s possible to find in a curved spacetime a reference system
such that locally 7z, = 0. Similarly, an adequate choice of

curvilinear coordinates 1 a flat space-time can yield non-
vanishing values for the components of 7,,. We infer trom this

that the energy of the gravitational field is a global property in
GR, not a local one.




The Weyl tensor

The Weyl curvature tensor 1s the traceless component of the
curvature (Riemann) tensor. In other words, it 1s a tensor that has
the same symmetries as the Riemann tensor with the extra condition
that metric contraction yields zero.

(Gafc R — 8bjc Raa) + Salc8dlbs

(n—1)(n—2)

2




The Weyl tensor

In 4 dimensions

| |
Cabed = Rabed + ;(gac Rab — 8bcRda — 8ad Reb + gbd Rea)

| |
+ g(gacgdb — 8ad8ch) R.




The Weyl tensor

In 3 or less dimensions  C_, =0

a

Two metrics that are conformally related to each other, 1.e.

?ab — ng(lbﬁ




The Weyl tensor

The absence of structure in space-time (1.€. spatial
1sotropy and hence no gravitational principal null-
directions) corresponds to the absence of Weyl
conformal curvature:

C2 — Cabchade — O

When clumping takes place, the structure 1s
characterized by a non-zero Weyl curvature.



Two seminal pap

" Q0 . j A
688 Sitzung der phys ch-mathematischen Klasse vom 22. Juni 1916

Niherungsweise Integration der Feldgleichungey
der Gravitation.

Von A. KiNsTEIN.

Bei der Behandlung der meisten speziellen (nicht prinzipiellen) Probleme
auf dem Gebiete der Gravitationstheorie kann man sich damit begniigen,
die g,, in erster Niherung zu berechnen. Dabei bedient man sich mit
Vorteil der imaginéiren Zeitvariable x, = if aus denselben Griinden wie
in der speziellen Relativititstheorie. Unter »erster Niiherung« ist dabei

verstanden, daB die durch die Gleichung

fuy

Guy = —20,,+Y, (1)

eIS

154 Gesamtsitzung vom 14. Februar 1918, — Mitteilung vom 31. Januar

Uber Gravitationswellen.

Von A. EINSTEIN.

(Vorgelegt am 31. Januar 1918 [s. oben S. 79].)

l)i(* wichtige Frage, wie die Ausbreitung der Gravitationsfelder er-
folgt, ist schon vor anderthalb Jahren in einer Akademiearbeit von
mir behandelt worden'. Da aber meine damalige Darstellung des Gegen-
standes nicht geniigend durchsichtig und auBerdem durch einen be-
dauerlichen Rechenfehler verunstaltet ist, muf ich hier nochmals auf
die Angelegenheit zuriickkommen.

Wie damals beschrinke ich mich auch hier auf den Fall, daf
das betrachtete zeitriumliche Kontinuum sich von einem »galileischen «
nur sehr wenig unterscheidet. Um fiir alle Indizes

Gup = —8,, 4" (1)
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GWs 1n linear gravity

e We consider weak gravitational fields:

Juv ~ Nuv + hyu + O(hfw)

T

flat Minkowski metric

e The GR field equations in vacuum reduce to the standard wave equation:

82

e Comment: GR gravity like electiromagnetism has a “gauge” freedom
associated with the choice of coordinate system. The above equation
applies in the so-called “iransverse-traceless (TT)” gauge where

how =0,  hE =0




Wave solutions

e Solving the previous wave equation in weak gravity is easy. The
solutions represent “plane waves”:

-
hu, = A, € .\"”

wave-vector

* Basic properties: A, k" =0, kok™ =0

/ \

transverse waves null vector = propagation along light rays

e Amplitude: AH*Y = 00 0 0
01 0 0
0010

two polarizations 0000

0000
0010
0100
0000




GWs: more properties

« EM waves: at lowest order the radiation can be emitted by a dipole
source (1=1). Monopolar radiation is forbidden as a result of charge
conservation.

« GWs: the lowest allowed multipole is the quadrupole (1=2). The
monopole is forbidden as a result of mass conservation. Similarly,
dipole radiation is absent as a result of momentum conservation.

« GWs represents propagating “ripples in spacetime” or, more accurately,
a propagating curvature perturbation. The perturbed curvature
(Riemann tensor) is given by (in the TT gauge):

1 .
R]OkO__Qaghjk ; 7. k=1,2,3




The quadrupole formula

¢ Einstein (1918) derived the quadrupole formula for gravitational radiation by solving the
linearized field equations with a source term:

K

TP

A & — 2|

W (t, E) = —kTH (8, 8) —> B = —

¢ This solution suggests that the wave amplitude is proportional to the second time
derivative of the quadrupole moment of the source:

2G ., , . M Y
h“ =;g %T t—’r/C) %T:/da:p(:c”’x —55"7')

\

( quadrupole moment in the “TT gauge” and at the retarded time t-r/c )

* This result is quite accurate for all sources, as long as the wavelength is much longer than
the source size R.




GW luminosity

e GWs carry energy. The stress-energy carried by GWs cannot be localized
within a wavelength. Instead, one can say that a certain amount of stress-
energy is contained in a region of the space which extends over several
wavelengths. The stress-energy tensor can be written as:

4

GW _ TT,
L, = 327_0@ h;.= 0, h )

e Using the previous quadrupole formula we obtain the GW luminosity:

o dEGW : 1 G " LV
LGW — o ' 3_<Qm/ Q >




Basic estimates

¢ Another estimate for the GW amplitude can be derived from the flux formula

Low c3
Faw = = Oyh|?
W = 42 167TG| th|

e We obtain:

h ~ 1022 Eaw 12 1 kHz ( T )—1/2 15 Mpc
" 10-4 M '0) fGW 1ms r

for example, this formula could describe the GW strain from a supernova explosion at
the Virgo cluster during which the energy £ v is released in GWs at a frequency of
1 kHz, and with signal duration of the order of 1 ms.

e This is why GWs are hard to detect: for a GW detector with arm length of [ = 4 km
we are looking for changes in the arm-length of the order of

Al=hl=4x10"1"cm
1p=8,4184(67) x 1014 ¢cm




GWs: polarization

e GWs come in two polarizations:

14 »”

+” polarization “x” polarization
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GWs and curvature

e As we mentioned, GWs represent a fluctuating curvature field.

Abinary system of compact massive objects rapidly
orbiting each other produces ripples in spacetime.
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GWs vs EM waves

e Similarities:

v Propagation with the speed of light.
v Amplitude decreases as ~ 1/r.

v Frequency redshift (Doppler, gravitational, cosmological).

e Differences:

v  GWs propagate through matter with little interaction. Hard to detect, but they
carry uncontaminated information about their sources.

v Strong GWs are generated by bulk (coherent) motion. They require strong
gravity/high velocities (compact objects like black holes and neutron star).

v 'EM waves originate from small-scale, incoherent motion of charged particles.
They are subject to “environmental” contamination (interstellar absorption etc.).
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Effect on test particles

« We consider a pair of test particles on the cartesian axis Ox at
distances = from the origin and we assume a GW traveling
in the z-direction.

2 Y

« Their distance will be given by the relation:

dl? = gudrtdr” = ... = —glldzth —

= (1 — h11)(220)* = [1 — hy cos(wt)] (2x0)*

1
1 — §h+ cos(wt)| (2xq)




GW emission from a binary system (I)

e The binary consists of the two bodies M1 and M2 at distances @1and 9
from the center of mass. The orbits are circular and lie on the x-y plane. The

orbital angular frequency is Q.
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e We also define: a = a; + as. = MyMsy /M,

-gravitatlonal wavefor




GW emission from a binary system (II)

¢ The only non-vanishing components of the quadrupole tensor are :

1
— pa? cos(20t)

Qzz = —Qyy = (a3 My + a5Ms) cos®(Q0t) = 5

| T

Quy = Qua = 5 pa’ sin(2€2t) (GW frequency = 2Q )
e And the GW luminosity of the system is (we use Kepler's 3rd law 02 =GM / a’ )

dt. G

_en 212/ 0 o102 2
Lew = Tl — (u2a”) " (2sin”(2€2) + 2 cos”(2€2) )

332G

32 G* M3 pu?
2 406 _
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GW emission from a binary system (I1I)

¢ The total energy of the binary system can be written as :

1 GMiM;  1GuM
E = 59 (Mya} + Mya3) e

e As the gravitating system loses energy by emitting radiation, the distance between

the two bodies shrinks at a rate:

db  GuM da da 64 G3 uM

dt ~ 242 dt - dt~ 5 5 a3

e The orbital frequency increases accordingly 7' /T = (3/2)a/a .

(initial separation)

5 e ag/
256 G3 puMH4

® The system will coalesce after a time: T




PSR 1913+16: a Nobel-prize GW source

e The now famous Hulse & Taylor binary neutron star system provided the first

astrophysical evidence of the existence of GWs!!

e The system’s parameters: r =5Kpe, M, ~ My ~14M,, T =T7h 45min

¢ Using the previous equations we can predict:

T =—-24x10"2sec/sec,  faw =7 x107°Hz, h~10"2, 7a~35x10%yr




Theory vs observations

e How can the orbital parameters be

measured with such high precision?

|
m

|
—
D

e One of the neutron stars is a pulsar,
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emitting extremely stable periodic
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radio pulses. The emission is
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system in 1974 more such binaries
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were found by astronomers.
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Bar detectors

Joseph Weber

e Bar detectors are narrow bandwidth instruments (like the previous toy-

model)
10 F T ; T 3 T T T ] 3 1 I 3
r B
{ l ' —— Allegro
. ! Aunga f
\‘ Explorer ;]
. Nautilus

~ 107} ~ L

- . ',

s, (1
=
T

107:: e - | | & L L | - - 11 L | A J
800 820 840 860 880 900 920 940 960 980 1000
Frequency (Hz)

Sensitivity curves of various bar detectors




Detectors: laser interferometry

A laser interferometer is an alternative choice for GW detection, offering a
combination of very high sensitivities over a broad frequency band.

e Suspended mirrors play the role of “test-particles”, placed in perpendicular
directions. The light is reflected on the mirrors and returns back to the beam
splitter and then to a photodetector where the fringe pattern is monitored.

photodetector

'/ power recycling mirror




Catching a wave
How a laser-interferometer observatory works

Before the wave

DETECTOR

Beams in step

5]

BEAM
SPLITTER MIRROR

MIRROR

During the wave

DETECTOR

Beams out of step

BEAM
SPLITTER MIRROR

GRAVITATIONAL WAVE
Arm 2 lengthens

MIRROR s v

The ligh = sends outa beam € thatis divided
by a beam sphtter @. The half-beams produced follow
paths of identical length €, reflecting off mirrors to
recombine @, then travel in step to the detector @.

Source: The Economist
Economist.com

When a gravitational wave arrives, it disturbs space-
time, lengthening (in this example) the light’s path
along arm 2; when the beams recombine and arrive
at the detector they are no longer in step.
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Noise 1n interferometric detectors

e Seismic noise (low frequencies). At frequencies below 60 Hz, the noise in the
interferometers is dominated by seismic noise. The vibrations of the ground couple
to the mirrors via the wire suspensions which support them. This effect is strongly
suppressed by properly designed suspension systems. Still, seismic noise is very
difficult to eliminate at frequencies below 5-10 Hz. /

¢ Photon shot noise (high frequencies).
The precision of the measurements
Is restricted by fluctuations in the fringe
pattern due to fluctuations in the number
of detected photons. The number of
detected photons is proportional to the
intensity of the laser beam. Statistical
fluctuations in the number of detected | |
photons imply an uncertainty in the Ml 8 — Tnioinalthenma

— CQuzntum noise 4

measurement of the arm length. : P VR W S

1572

h(r)/Hz

Equivalent strain noise,

Frequency (Hz)




Templates for GWs from BBH coalescence

(Buonanno & Damour 2000)

¢ llEymcrep’ WA VE For#

(Brady, Craighton, Thorne 1998)
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A catalog of 171 high-quality binary black-hole simulations for gravitational-wave

astronomy larXiv: 1304.6077]

Abdul H. Mroué,! Mark A. Scheel,? Béla Szilagyi,? Harald P. Pfeiffer,! Michael Boyle,® Daniel A. Hemberger,®
Lawrence E. Kidder,® Geoffrey Lovelace,*? Sergei Ossokine,!*® Nicholas W. Taylor,? Anil Zenginoglu,? Luisa
T. Buchman,? Tony Chu,! Evan Foley,! Matthew Giesler, Robert Owen,® and Saul A. Teukolsky®
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FIG. 3: Waveforms from all simulations in the catalog. Shown here are h, (blue) and h; (red) in a sky direction parallel to
the initial orbital plane of each simulation. All plots have the same horizontal scale, with each tick representing a time interval

of 2000M , where M is the total mass.




Detectors: the present (I)

The twin LIGO detectors (L = 4 km) at Livingston Louisiana and
Hanford Washington (US).
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LIGO's interferometer 1s
classified as a

Dual Recycled, Fabry-Perot
Michelson Interferometer.

kilometers
The length of the L-shaped interferometers that
contain Advanced LIGO'’s instrumentation and
approximately 40 city blocks in length.

« [
laser beams ] / ] 0003?::.':2:1“

Actually one that is split into two rays that go
back and forth in interferometer vacuum tubes
between precisely configured mirrors.

The degree of movement LIGO laser
beams could detect in the mirrors;
Advanced LIGO is 10 times more sensitive.

nanosecond

after Big Bang ] O -] OOOHZ

The cosmic gravitational background from Sk
e : s Advanced LIGO's increased frequency range,
this time period that scientists hope to capture which is key to observing signals from

to test theories about the universe's development coalescing black holes and pulsars

The California Institute of Technology and Massachusetts Institute of Technology designed and operate the NSF-funded Advanced Laser
Gravitational Wave Observatories (Advanced LIGO) that are aimed to see and record gravitational waves for the first time, allowing us to
learn more about phenomenon like supernovae and colliding black holes that propagate these ripples in the fabric of time and space.

NATIONAL SCIENCE FOUNDATION




Strain (102)

Gravitational waves detected by LIGO!
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Signals in synchrony

When shifted by 0.007 seconds, the signal from LIGO's
observatory in Washington (red) neatly matches
the signal from the one in Louisiana (blue).
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LIGO

The First Observation
of Gravitational Waves

Inspiral Merger Ring-
down

S EXEIT

— Numerical relativity
I Reconstructed (template)
I

Separation (Rg)

0.35
Time (s)

Primary black hole mass
Secondary black hole mass

Final black hole mass

Final black hole spin

Luminosity distance

Source redshift z




Masses in the Stellar Graveyard

in Solar Masses
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Implications of the detection of GWs:

Gravitational waves exist

Compact objects very much like to black holes exist
Gravitational waves transport energy —> the spacetime has
energy 1n absence of matter and can be considered as
material as well, since 1t can act upon physical systems such
as mIrrors.

Spacetime has a dimensionality of n=4 or higher.

Existence 1s non-local.

Gravitational wave astronomy is born!




Going underground: the ET

® The Einstein Telescope will be the next generation underground detector.




The Einstein Telescope has been proposed by 8 European research institutes:

European Gravitational Observatory

Istituto Nazionale di Fisica Nucleare The arms will be 10 km long
1(\:43Xt Plﬁlctlf Solmdeqi c (compared to 4 km for LIGO,
entre National de la Recherche Scientifique and 3 km for Virgo), and like

University of Birmingham ,
University of Glasgow LISA, there will be three arms

NIKHEF in an equilateral triangle, with
Cardiff University two detectors in each corner.

The low- frequency interferometers (1 to 250 Hz) W111 use opt1cs

mw.a.ﬂ%mmmm optics and a much highes

|
|
|




Gravitational wave detection with pulsars

EPTA/LEAP
IPTA

International
Pulsar Timing

£ SIPA L ot

Lovell Telescope, Cheshire, UK

T
. Green Bank Telescope, WV, US

na
')
| <M.

LIS 2

B N

LOFAR, Exloo, Netherlands

Parkes
Observatory,
Parkes,

Australia

WSRT, Westerbork, Radio
Netherlands Telescope, Effelsberg, Germany

a g

Pune, India

GMRT, P =4




LaFavV

tNANOGraV stands for North Amerlean Nanohertz Observatory for
Grav1tat10nal Waves. As the name 1mplies, NANOGrav members are drawn
from across the United States and Canada . Their goal 1s to study the Universe |
using gravitational waves. NANOGrav uses the Galaxy itself to detect|
| gravitational waves with the help of pulsars. This is known as a Pulsar Timing |
| Array, or PTA. NANOGrav scientists make use of some of the world's best .
telescopes and most advanced technology, drawing on physics, computer |
1 science, signal processing, and electrical engineering. ]




Goling to space: the LISA detector

¢ Space-based detectors: “noise-free” environment, abundance of space!

e Long-arm baseline, low frequency sensitivity

e LISA: Up until recently a joint NASA/ESA mission, now an ESA mission only.
To be launched around 2020.

LISA (NASA-ESA)




R : - - . . * = 7 = i R —
ey iy e ; Wt '. . -
a . > 3 “ : : ., d

' Supermassive ... CompactObject - . Galactic White | - CosmicStringsand .. o< s jLaser InterferometerSpace Antagna s
Black Hole Binaries . « Captures Dwarf Binaries - Phase Transitions [ -« SIS ST~ || e M‘ ite
SN T ; o o sy P % N e & Bl o . HSEOE T, s ; Al Al “ Il =
¥ _- F 5 » - - ., o ” L :' Koy Z * LY ; ; _ '_ 2 o = uj - * 0 . il
: 4 a e : A s . " . - : R - el .
|l e e S W AT T - s 57T o X : o F T .
.*‘( '.‘ G i L o : -' < 3 2 e .‘ & o’ " 8 N j : . :. ... . '. 2 ..""’ e ! - et o ‘ . i ' - .".‘ S
' “ "'f.-,u ., _.v v . AR .' rgi . B g i ts B . . : i s ." - , e AR : -". e ; s .v Lot W : & ‘.
"~ " Gravity is talking. LISA will listen. | R v
L, e vaE Ea el o R o R .

¥ 4
. o .

% -
e d
>
" Black hole binary at z=15;
105 M,, two'hours before merger.
Numerical waveform plus instrument - .
noise and WD background (J. Baker)

0 -

-
& E

Booth design by S.Bingham, D.Levitan, SPhinney, B,Schurmaker, and'M.Vallisneri

bl o= 2 B, el . n‘g.‘

* i : = . - p s s
B_acqu&.m:i: CO3MOS (Scblille et al. 2007), NGC 6240 (NASA/CXC/MST), Atist's Renderi




Strain

IC

Characteri

10—12

Stochastic EPTA
background IPTA
10-14 i
-16 |
10 eLISA
10° solar 10° solar mass binaries
mass
10 binaries Resolvable galactic
107 '°¢ LISA binaries LIGO
aLIGO
Extreme mass
-|()'zJ . ratio inspirals
-22|
10 Compact binary
inspirals
Supernovae
10724}
10-8 |-10 |-8 |-6 |_4 |-2 1 o 1 2 1 4 1 6
10 10 10 10 10 10 10 10 10

Frequency / Hz







Alternative theories of gravitation

= Scalar-tensor gravity (Brans & Dicke 1961)

=  Gravity with extra-dimensions
= {(R) gravity




Scalar-tensor gravity

The masses of the different fundamental particles would not
be basic intrinsic properties but a relational property
originated in the interaction with some cosmic field.

Brans and Dicke introduced a scalar m;(xt) = \;o(zH).
field that determines the strength of G, - |
1.e. the scalar field determines the
coupling strength of matter to gravity.




Scalar-tensor gravity
OR — wa"dfc'p

S:/d“mﬁ o + Ly

Gy = %”Tab + %(amam - 90907 9) + %(vavm — g0500)
8
¢ = 3+ ZwT

Evidence — derived from the Cassini—-Huygens experiment — shows that the
value of w must exceed 40,000.



In STVG theory, gravity 1s not only an interaction mediated by a tensor field,
but has also scalar and vector aspects. The action of the full gravitational field 1s:

S = SGr + S + Ss + SM.

1
o\ 3 gV, mV,m— V(m)) ] .







Gravity with extra-dimensions

In April 1919 Kaluza noticed that when he solved Albert Einstein's equations for
general relativity using five dimensions, then Maxwell's equations for
clectromagnetism emerged spontaneously.

Kaluza's fundamental insight was to write the action as:

/ P—( d*zdy.

1()/\ (T

9 X
* = Guudatdz?,




Gravity with extra-dimensions

The five-dimensional metric has 15 components. Ten components are
identified with the four-dimensional spacetime metric, four components
with the electromagnetic vector potential, and one component with an
unidentified scalar field sometimes called the "dilaton".

The five-dimensional Einstein equations yield the four-dimensional
Einstein field equations, the Maxwell equations for the electromagnetic
field, and an equation for the scalar field. Kaluza also introduced the
hypothesis known as the "cylinder condition", that no component of the
five-dimensional metric depends on the fifth dimension.

Kaluza also set the scalar field equal to a constant, in which case
standard general relativity and electrodynamics are recovered 1dentically.



Gravity with extra-dimensions

G = [g,w + ¢’ A, A, ¢2A,‘].
” A, ¢’
9w = Guv + ¢2AuAua I50 = Gus = ¢2Ava Js5 = ¢2

ds* = g, da"dz’ = g, datdz” + ¢*(A,dz" + dz°)?
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Cylinder condition: g“: =0
v F.s = 0,A3 — 034,
-~ 1 - 1
Rso = 0= 3¢V, (¢°Fap) Rgs = 0= 0O¢ = 2¢"F* Fop
=~ 1, = 1 | A 1 ) | 1
Rp,u - Egp,uR =0= R;w - EgpuR — E‘f’ g FpaFuB - nguFaﬁF + g (V,;V,,(f) - guuD¢)

This equation shows the remarkable result, called the "Kaluza miracle", that the precise form
for the electromagnetic stress-energy tensor emerges from the 5D vacuum equations as a
source 1n the 4D equations: field from the vacuum.



Gravity with extra-dimensions

A very interesting feature of the theory is that charge conservation can be inter-
preted as momentum conservation in the fifth dimension:

JH =2aTH.

where J# is the current density and « a constant. The variation of the action
yields both Einstein’s and Maxwell’s equations:

2

and 9, FM" =——J".
2G




Gravity with extra-dimensions

The action introduced by Kaluza describes 4-D gravity
along with electromagnetism. The price paid for this
unification was the introduction of a scalar field called
the dilaton (which was fixed by to be =1) and an extra
fifth dimension which 1s not observed.

In 1926, Oskar Klemn proposed that the fourth spatial dimension 1s curled
up 1n a circle of very small radius, so that a particle moving a short distance
along that axis would return to where 1t began. The distance a particle can
travel before reaching its initial position 1s said to be the size of the
dimension. This extra dimension i1s a compact set, and the phenomenon of
having a space-time with compact dimensions 1s referred to as
compactification.



Gravity with extra-dimensions

Klein (1926) suggested that the fifth dimension was not observable because
1t 1s compactified on a circle. This compactification can be achieved 1dentifving
y with y 4+ 27 R. The guantity R is the size of the extra dimension. Such a size
should be extremely small in order to be not detected in experiments. The only
natural length of the theory is the Planck length: R =~ lp ~ 1073 m.
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f(R)-Gravity

In f(R) gravity, the Lagrangian of the Einstein-Hilbert action:

"/

i 1 ,.
Slg| = /zfl_]?—g/(l4.1'

1s generalized to

Slgl = [ 5-f(BR)V=gd's

i IV

f(R) = aR? + b R

f(R) =aexpP®+ bR



f(R)-Gravity

o I |
F(R)Ruv — Ef(R)guv + [guvlj — V/,LVV]F(R) = KT[.LU&

Higher than second order derivatives are possible in f(R)
theory depending on the explicit form of the function f



C4

S =
16 G

/ d*x /—2(R + @R?) + Smaticr.




Maxwell equations

{ 0 —E'Y¢ —E?/c —E3/C\
E'/c 0 —B’ B?
E*/c B’ 0 —B!
E’/c —B° B! 0

(] =

[ /*] = poyu(c, i) = (cp, J),




Maxwell equations

apFﬂvzl“‘Ojv9
oF +dF +dF, =0.

o’ uv v: on nt vo




Maxwell equations




Maxwell equations with gravity

V;LF“V:MO.]Va
VoF o + Vit oy +VuF e =0.

ot uy vt ou ut vo

dx¥ dx? 9 u dx?

dr dr omy  Udr




Born-Infeld non-linear electrodynamics




Einstein-Maxwell equations

l 8nG
— ERguv + Aguv = T (Tuv + E;w)a

C

I
_Fﬂprv -+ 285F0AF0A-




Energy of gravitational waves



L
W (ct, X) = 4G le'
4G (ct—|x—=Y|,y
" yl, y)




] | . ]
S — — (=Y (—Vv/)a.0. | —
(3x11—r28 )
—- +...’
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- 4G
W (ct, x) = [ /T“V(Ctr, V) doy 4+ - /T"“’(Ct )y d°y

3x;x — %8
+ #/ T (cty, ¥)y'y &y + } ,

l’




Multipolar expansion

[wp.z/iliz...if (Cf) _ / T“V(Cf, :\;)yi,yiz o yig d3i’,



Compact source approximation

A T @3y, total energy of source particles (including rest mass energy) = Mc?;
| TY @3y, ¢x total momentum of source particles in the x‘-direction = P'c;
| TY d3y, integrated internal stresses in the source.

2G
h(ct,X)=—"= [

cOr dt’2

d21ff(cr')]

N 00, L Quadrupole-moment
I (ct) = / (RO RR A (cnsor of the cnergy
density of the source






fo,} = R(23 — %an(z) - %hle(l) + %nw,lzp”Rgo),,

2 - 2)9 - 2)9 1)P )Y 1)P )9
RL3=(’VF() ;.La_dar() lw_}_r() lwr() pv_r() ;wr() o

— 0 hy,) 4




Rl(f,} = —3(3,hP7)d,h g + 5hP7 (0,05 hy, + 0,05 hy, — 0,0, h,0 — 3,0,h,,)

+5(07h0) (3, gy — dghyy) + 5 (3 hPT — 58P h) (0, iy + Dyhyy — 3 k).

4

C
327G

~ ((9ultpe) 0y 1P —2(35 1P ) 1y — %(3,, 1), 1)

v)p




= Airr COS kAx'\,




The final expression 1s simply the energy density associated with the plane
wave multiplied by its speed, and hence makes good physical sense as the
energy flux carried by the wave 1n 1ts direction of propagation.









